Synthesis and Chemistry of Acyclic Mono- and Disiloxanes: Useful Precursors to Per- and Polyfluoroethers

Nimesh R. Patel, Jianguo Chen, Yuan F. Zhang, Robert L. Kirchmeier, and Jean'ne M. Shreeve^{*}

Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343

Received June 28, 1994[®]

Acyclic polyfluoro mono and disiloxanes $CF_3CH_2OSiMe_3$ (1), $CF_3C(CH_3)_2OSiMe_3$ (2), $CH_3C(CF_3)_2OSiMe_3$ (3), $C_6H_5C(CF_3)_2OSiMe_3$ (4), $(CF_3)_2CHOSiMe_3$ (5), $(CF_3)_3COSiMe_3$ (6), $FCH_2CH_2OSiMe_3$ (7), $HCF_2CF_2CH_2OSiMe_3$ (8), $n-C_7F_{15}CH_2OSiMe_3$ (9), $(CF_2CH_2OSiMe_3)_2$ (10), and $CF_2(CF_2CH_2OSiMe_3)_2$ (11) are synthesized by the reactions of their respective alcohols with hexamethyldisilazane. Reactions of 1 with CH_2Br_2 , $(CNF)_3$, $CFBr_3$, perfluorocyclobutene, and C_6F_5CN proceed readily in the presence of fluoride ion to form $CH_2(R_f)_2$ (12), $C_3N_3(R_f)_3$

(13), $C(R_f)_4$ (14), $CF_2C(R_f)=C(R_f)CF_2$ (15), $CF_2C(R_f)=C(F)CF_2$ (16) and $4-R_fC_6F_4CN$ (17) (when reacted 1:1) and $(R_f)_5C_6CN$ (18) (when reacted with excess of 1), respectively ($R_f = OCH_2CF_3$). Reactions of 2 with C_6F_5CN , C_6F_6 , $CF_3C_6F_5$, CIC_6F_5 , NC_5F_5 , 1,2-diiodotetrafluorobenzene and perfluorocyclobutene in the presence of fluoride ion give $R_fC_6F_4CN$ (19) or $(R_f)_2C_6F_3CN$ (20) (depending on the ratio of reactants), $R_fC_6F_5$ (21), $R_fC_6F_4CF_3$ (22),

 $R_fC_6F_4Cl$ (23), $R_fC_5F_4N$ (24), $R_fC_6F_3I_2$ (25), and $CF_2C(R_f)=C(F)CF_2$ (26), respectively ($R_f = CF_3C(CH_3)_2O$). Reactions of 3 with C_6F_5CN , C_6F_6 and 1,2-diiodotetrafluorobenzene with fluoride ion as catalyst form $R_fC_6F_4CN$ (27), $R_fC_6F_5$ (28) and $R_fC_6F_3I_2$ (29), respectively ($R_f = CH_3C(CF_3)_2O$). Reactions of 4 with $CF_3C_6F_5$, C_6F_5CN ,

perfluorocyclobutene, C₆H₅CH₂Br and CH₃I give R_fC₆F₄CF₃ (**30**), R_fC₆F₄CN (**31**), CF₂C(R_f)=C(F)CF₂ (**32**), R_fCH₂C₆H₅ (**33**) and R_fCH₃ (**34**), respectively (R_f = C₆H₅C(CF₃)₂O). Reactions of **5** with C₆F₅CN and CF₃C₆F₅ result in R_fC₆F₄CN (**35**) and R_fC₆F₄CF₃ (**36**), respectively (R_f = (CF₃)₂CHO). Siloxanes **6**, **7**, **8** and **9** with C₆F₅CN form CNC₆F₄OC(CF₃)₃ (**37**), FCH₂CH₂OC₆F₄CN (**38**), HCF₂CF₂CH₂OC₆F₄CN (**39**) and *n*-C₇F₁₅-CH₂OC₆F₄CN (**40**). Disiloxane **10** with CH₂Br₂, Br₂CHCHBr₂, SOF₂, SO₂Cl₂, COF₂, C₆F₅CN, (COF)₂, POCl₃, C₅F₅N, CF₃SO₂F, 1,2-diiodotetrafluorobenzene, I(CF₂)₂O(CF₂)₂SO₂F, FC(O)(CF₂)₃C(O)F and 1,4-dibromotetrafluorobenzene gives polyfluorinated cyclic or acyclic ethers $CF_2CH_2OCH_2OCH_2CF_2$ (**41**), CF_2CH_2 -

OCHOCH₂(CF₂)₂CH₂OCHOCH₂CF₂ (**42**), CF₂CH₂OS(O)OCH₂CF₂ (**43**), CF₂CH₂OSO₂OCH₂CF₂ (**44**), FC(O)OCH₂-

 $CF_{2}CF_{2}CH_{2}OC(O)F (45), 4-CNC_{6}F_{4}OCH_{2}CF_{2}CF_{2}CH_{2}OC_{6}F_{4}CN-4 (46), CF_{2}CH_{2}OC(O)C(O)OCH_{2}CF_{2} (47), CF_{2}CH_{2}OC(O)C(O)CH_{2}CF_{2} (47), CF_{2}CH_{2}OC(O)CH_{2}CF_{2} (47), CF_{2}CF_{2} (47), CF_{2} (47), CF_{$

CF₂CH₂OP(O)FOCH₂CF₂ (48), NC₃F₄OCH₂CF₂CF₂CH₂OC₅F₄N (49), CF₃SO₂OCH₂CF₂CF₂CH₂OSO₂CF₃ (50),

F2CH2CO(3,6-difluoro-4,5-diiodo-o-phenylene)OCH2CF2 (51), I(CF2)2O(CF2)2SO2OCH2(CF2)2CH2OSO2(CF2)2O(CF2)2I

(52), $CF_2CH_2OC(O)(CF_2)_3C(O)OCH_2CF_2$ (53), and $(-F_2CH_2CO)_2(3,6-dibromo-1,2,4,5-benzenetetrayl)(OCH_2-CF_2-)_2$ (54), respectively. Reactions of 11 with CH_2Br_2 , COF_2 , SOF_2 , and SO_2Cl_2 also give cyclic and acyclic

ethers CF2CF2CH2OCH2OCH2OCH2CF2 (55), FC(0)OCH2(CF2)3CH2OC(0)F (56), CF2CF2CH2OS(0)OCH2CF2 (57),

and $CF_2CF_2CH_2OSO_2OCH_2CF_2$ (58), respectively. Ethers 17, 38–40 and $CH_3CH(CF_3)OC_6F_4CN$ (59) are also prepared by reacting the corresponding alcohols with pentafluorobenzonitrile in the presence of alkali carbonate as the HF-acceptor. Reaction of $C_6H_5OSiMe_3$ with C_6F_5CN yields the polyether ($C_6H_5O)_5C_6CN$ (60). When ethers 17, 38–40 and 59 are hydrolyzed in alkaline hydrogen peroxide (30%), the corresponding benzamides $CF_3CH_2OC_6F_4CONH_2$ (61), $FCH_2CH_2OC_6F_4CONH_2$ (62), $HCF_2CF_2CH_2OC_6F_4CONH_2$ (63), $n-C_7F_{15}CH_2OC_6F_4-CONH_2$ (64) and $CH_3CH(CF_3)OC_6F_4CONH_2$ (65), respectively, are formed.

Introduction

The demand for materials that may be useful as stable high temperature fluids in a variety of environments encourages the research for methodologies to form highly fluorinated ethers or per or polyfluoroalkoxy derivatives. Silicon-oxygen bond characteristics result in many useful organic and inorganic synthetic applications of siloxanes.¹⁻³ Although cleavage of a silicon-oxygen bond frequently requires more rigorous condi-

tions⁴ or highly reactive reagents⁵ than those for Si-X (X = halogen, nitrogen or chalcogen), it does occur under rather mild conditions in, for example, the reactions of silyl enol ethers² or of siloxanes with moieties which have a variety of main group element-fluorine bonds.⁶ Others have demonstrated that in the presence of anionic catalysts, silyl ethers can be caused to react

- (5) Crans, C. D.; Felty, R. A.; Anderson. O. P.; Miller, M. M. Inorg. Chem. 1993, 32, 247.
- (6) Elias, A. J.; Hope, H.; Kirchmeier, R. L.; Shreeve, J. M. Inorg. Chem. 1994, 33, 415 and references therein.

[®] Abstract published in Advance ACS Abstracts, November 1, 1994.

Greene, T. W. Protective Groups in Organic Synthesis; John Wiley: New York, 1981.

⁽²⁾ Weber, W. P. Silicon Reagents in Organic Synthesis; Springer-Verlag: New York, 1983.

⁽³⁾ Corriu, R. J. P.; Young, J. C. In *The Chemistry of Organo Silicon Compounds*; Patai, S., Rappoport, Z., Eds.; John Wiley and Sons, Inc.: New York, 1989.

⁽⁴⁾ Mascony, J. J.; MacDiarmid, A. G. Chem. Commun. 1965, 307.

with perfluorinated alkenes to produce partially fluorinated vinyl ethers in exceptionally high yields.⁷ However, until recently organosilicon reagents were employed only rarely in the synthesis of highly fluorinated materials.⁷⁻¹⁰ In our continuing search for efficacious routes for the introduction of fluoroalkoxy substituents into fluorinated substrates, as well as our ongoing studies of polyfluorinated diols, we have extended markedly the synthesis and chemistry of polyfluoroalkoxysilanes.^{6,11} While earlier we reported the reactions of dilithium and disodium derivatives of diols with various S, ¹² P, ^{6,13} and $C^{11,14}$ -containing compounds, we note a marked difference in reactivity and product formation as a function of the length of the fluoroalkyl chain and the method used to activate the hydroxy group.

In this work, the synthesis of acyclic mono and disiloxane derivatives of various alcohols and their reactions with a variety of halogenated compounds is carried out to prepare new cyclic and acyclic polyfluoro and perfluoroethers. Both mono and disiloxanes are found to react readily with halogenated compounds in the presence of fluoride ion as catalyst via facile elimination of the respective silyl fluorides.

Results and Discussion

The siloxanes $CF_3CH_2OSiMe_3$ (1), $CF_3C(CH_3)_2OSiMe_3$ (2), $CH_3C(CF_3)_2OSiMe_3$ (3), $C_6H_5C(CF_3)_2OSiMe_3$ (4), $(CF_3)_2$ -CHOSiMe₃ (5), (CF₃)₃COSiMe₃ (6), FCH₂CH₂OSiMe₃ (7), $HCF_2CF_2CH_2OSiMe_3$ (8), $n-C_7F_{15}CH_2OSiMe_3$ (9), Me_3- SiOCH₂(CF₂)₂CH₂OSiMe₃ (10), and Me₃SiOCH₂(CF₂)₃CH₂- $OSiMe_3$ (11) are obtained conveniently in relatively high yields by the controlled treatment of the corresponding alcohols with hexamethyldisilazane in the presence of a catalytic amount of sodium saccharin.6,11,15,16

Reactions of 1 with CH₂Br₂, (CNF)₃, and CFBr₃ proceed rapidly in the presence of fluoride ion to give the polyfluorinated ethers which are a stable liquid (12) or solids (13, 14) melting below 95 °C. The methylene 12 or triazene 13 ether is also

obtained either from the reaction of 2,2,2-trifluoroethanol with formaldehyde in the presence of 90% $H_2SO_4^{17}$ or with triazene in the presence of KOH,¹⁸ respectively. However, the use of silvlated precursors has the advantage in that these reagents can

- (7) Farnham, W. B. In Synthetic Fluorine Chemistry; Olah, G. A., Chambers, R. D., Prakash, G. K. S., Eds.; John Wiley & Sons, Inc.: New York, 1992; Chapt. 11, and references therein.
- (8) Fujita, M.; Hiyama, T. J. Am. Chem. Soc. 1985, 107, 4085. Fujita, M.; Obayashi, J; Hiyama, T. Tetrahedron 1988, 44, 4135.
- (9) Yamazaki, T.; Ishikawa, N. Chem. Lett. 1984, 521.
 (10) Boutevin, B.; Pietrasanta, Y. Prog. Org. Coatings 1985, 13, 297.
- (11) Zhang, Y.-F.; Kirchmeier, R. L.; Shreeve, J. M. J. Fluorine Chem. 1994, 68, 287
- (12) Marsden, H. M.; Shreeve, J. M. Inorg. Chem. 1986, 25, 4021.
- (13) Mahmood, T.; Shreeve, J. M. Inorg. Chem. 1986, 25, 4081. Kamil, W. A.; Bond, M. R.; Willett, R. D.; Shreeve, J. M. Inorg. Chem. 1987, 26, 2829
- (14) Guo, C.-Y.; Elias, A. J.; Kirchmeier, R. L.; Shreeve, J. M. Manuscript in preparation.
- (15) Ykman, P.; Hall Jr., H. K. J. Organomet. Chem. 1976, 116, 153.
- (16) Bruynes, C. A.; Jurriens, T. K. J. Org. Chem. 1982, 47, 3966.
- (17) Shipp, K. G.; Hill, M. E. J. Org. Chem. 1966, 31, 853. (18) Chang, M. S.; Matuszko, A. J. J. Org. Chem. 1962, 27, 677.

be employed under mild conditions (heating at 70 °C in presence of fluoride ion with acetonitrile as solvent) without using highly acidic or basic solutions. The reaction with CFBr₃ to form 14 stresses the increasing electrophilicity of the carbon center as the bromine atoms are displaced by polyfluorinated alkoxide which aids the displacement of the sole fluorine atom.

The products obtained when 1 is reacted with perfluorocyclobutene in a ratio of 2:1 in the presence of fluoride ion are solid (15) and liquid (16).

$$CF_{2}CF = CFCF_{2} + 1 \xrightarrow{F^{-}} CF_{2}C(OCH_{2}CF_{3}) = C(OCH_{2}CF_{3})CF_{2} (15)$$
$$+ CF_{2}C(OCH_{2}CF_{3}) = C(F)CF_{2} (16)$$

Ethers 15 and 16 were both previously prepared in a stainless steel pressure reactor by using 2,2,2-trifluoroethanol and perfluorocyclobutene in presence of 85% KOH.¹⁹ This reaction again demonstrates that siloxane reactions are possible under less vigorous conditions.

The ease with which the carbon-fluorine bonds in a variety of perfluoro or polyfluoroaromatic materials can be substituted to introduce one or more per or polyfluoroalkoxide group(s) primarily as a function of stoichiometry provides a powerful route to multiple families of stable, highly fluorinated aromatic polyethers. Reaction of 1 with an aromatic ring C_6F_5CN gives rather low yields of 4-CF₃CH₂OC₆F₄CN (17) (when reacted 1:1) and $(CF_3CH_2O)_5C_6CN$ (18) (when reacted with excess of 1). The pentaether is a white, crystalline solid whose structure is expected to be similar to that of $(CF_3CH_2O)_6C_6$ that is synthesized from 1 with hexafluorobenzene.¹¹

In changing from 1 to 2 where the methylene protons are replaced by methyl groups, reactions with C₆F₅CN, C₆F₆, C₆F₅CF₃, C₆F₅Cl, C₅F₅N, 1,2-diiodotetrafluorobenzene as well as perfluorocyclobutene proceed in the presence of fluoride ion to give monoethers 19, 21-26 and diether 20 (Scheme 1). Although not as many reactions are successful with 3 where the alkoxide is bis(trifluoromethyl)-tert-butoxy, similar reactions occur with the most electrophilic reagents, pentafluorobenzonitrile, hexafluorobenzene and diiodotetrafluorobenzene to form the monosubstituted derivatives $CH_3C(CF_3)_2OC_6F_4CN$ (27), $CH_3C(CF_3)_2OC_6F_5$ (28), and $CH_3C(CF_3)_2OC_6F_3I_2$ (29), respectively. Further modification of the alkoxy group to phenylbis-(trifluoromethyl)-tert-butoxy (4) causes no problems in the subsequent formation of $CF_3C_6F_4OR_f$ (30), $NCC_6F_4OR_f$ (31), $c-C_4F_5OR_f$ (32), $C_6H_5CH_2OR_f$ (33), and CH_3OR_f (34) ($R_f =$

⁽¹⁹⁾ Dear, R. E. A.; Gilbert, E. E. J. Chem. Eng. Data 1969, 14, 493.

 $C_6H_5C(CF_3)_2$) from $CF_3C_6F_5$, C_6F_5CN , $CF_2CF=CFCF_2$, $C_6H_5-CH_2Br$ and CH_3I . Using a reaction stoichiometry of 1:1 silyl ether to substrate, only in the case of 2 with C_6F_5CN is evidence found that disubstitution occurs to form 20 which suggests a slightly greater nucleophilic character for 2. This is not surprising since the nucleophilicity of the alkoxide should be related inversely to the number of trifluoromethyl substituents.

Of the electrophiles attempted, reactions of **5** proceed only with C_6F_5CN and $C_6F_5CF_3$ to form $(CF_3)_2CHOC_6F_4CN$ (**35**) and $(CF_3)_2CHOC_6F_4CF_3$ (**36**). Finally, under the same mild conditions, perfluoro-*tert*-butylsilyl ether (**6**) reacted only with the most active electrophile used in this study, C_6F_5CN , to form $(CF_3)_3COC_6F_4CN$ (**37**) in ~70% yield. This is in keeping with the effect of the reduced nucleophilicity of the alkoxide since the inductive effect of the trifluoromethyl groups decreases the basicity of the oxygen. Not surprisingly when the reactant is iodomethane, metathesis with **4** occurs readily to displace the iodine. However, when the iodine is found in an electron deficient environment, as in 1,2-diiodotetrafluorobenzene, the carbon bonded to fluorine is significantly more electrophilic and therefore more likely to undergo nucleophilic attack by **2**, e.g., to form **25**.

With the highly electrophilic C_6F_5CN , silylethers, such as 7–9, that have polyfluoroalkyl groups containing two, three and eight carbon atoms, respectively, produce stable polyfluoroethers in yields between 54–74%, *viz*. While ethers 17, 38–40 and

+ FCH₂CH₂OSiMe₃
$$\rightarrow$$
 FCH₂CH₂OC₆F₄CN
7
38
C₆F₅CN + HCF₂CF₂CH₂OSiMe₃ \rightarrow
8
HCF₂CF₂CH₂OC₆F₄CN
39
+ n-C₇F₁₅CH₂OSiMe₃ \rightarrow n-C₇F₁₅CH₂OC₆F₄CN
9
40

59 are stable to their melting points and beyond, and to acqueous hydrolysis, they are hydrolyzed when dissolved in 5% KOH in ethanol and treated with 30% hydrogen peroxide at 25 °C to form the stable benzamides 61-65 that melt without decomposition over the range 140-174 °C. These amides may have

$$\begin{array}{ccc} \text{ROC}_6\text{F}_4\text{CN} &+ 2\text{H}_2\text{O}_2 \xrightarrow{\text{OH}} \text{ROC}_6\text{F}_4\text{CONH}_2 \\ \textbf{17}, \textbf{38-40}, \textbf{59} & \textbf{61-65} \end{array}$$

....

practical value in the preparation of modified benzoylurea herbicides. The presence of the groups FCH_2CH_2O - and HCF_2 - CF_2CH_2O -, may be effective as biologically active groups while $n-C_7F_{15}CH_2O$ - could increase the surfactant characteristics of the molecule.

Earlier we used metallated polyfluorodiols to form cyclic diethers with a variety of simple inorganic species.^{6,12-14} Polyfluorinated disiloxanes are much easier to use, react under milder conditions, and are much more versatile synthetic reagents. At ~70 °C, in the presence of fluoride ion, and with the concomitant formation of (Me)₃SiF as the driving force, disiloxane Me₃SiOCH₂(CF₂)₂OSiMe₃ (10) readily reacts with CH₂Br₂, Br₂CHCHBr₂, SOF₂, SO₂Cl₂, COF₂, C₆F₅CN, (COF)₂, POCl₃, C₅F₅N, CF₃SO₂F, 1,2-diiodotetrafluorobenzene, ICF₂-CF₂OCF₂CF₂SO₂F, perfluoroglutaryl fluoride, and 1,4-dibromotetrafluorobenzene to give diethers **41–54** as shown in Table 1. With the exception of **45**, **46**, **49** and **52**, the products

are cyclic diethers. The yields of the ethers range between 60 and 80%. Although acetonitrile is normally the solvent of choice, the reactions of $ICF_2CF_2OCF_2CF_2SOF_2$, perfluoroglutaryl fluoride, and 1,4-dibromotetrafluorobenzene with 10 are found to proceed smoothly under the same conditions in THF as well. Diglyme is particularly useful as solvent for the reaction of 10 with 1,2-diiodotetrafluorobenzene.

The products obtained are a function of the stoichiometry of the reactants used. For example, in order to synthesize cyclic diethers **41**, **43**, **44**, **47**, **48** and **53**, reactions of CH₂Br₂, SOF₂, SO₂Cl₂, (COF)₂, POCl₃ and FC(O)(CF₂)₃C(O)F with **10** should be carried out by using a ratio of 1:1 to avoid mixtures of products. Because of the presence of only a single reactive site, e.g., in CF₃SO₂F and ICF₂CF₂OCF₂CF₂SO₂F, or a strong paradirecting tendency as in C₆F₅CN and C₅F₅N, a stoichiometry of 2:1 reactant to **10** is required to obtain the acyclic polyfluoro diethers **50**, **52**, **46** and **49**, respectively. Not surprisingly, nucleophilic attack occurs only at the S-F bond in ICF₂CF₂-OCF₂CF₂SO₂F, to form acyclic **52**, and at the C-F bonds in 1,2-diiodotetrafluorobenzene to give bicyclic **51** as well as in 1,4-dibromotetrafluorobenzene to result in tricyclic **54**. This was also observed when **2** was reacted with the diiodobenzene.

While the geometry of oxalyl fluoride is such that it is possible to easily form the cyclic diether 47, planar COF₂ with bond angles of $\sim 120^{\circ}$ precludes the formation of the strained seven or eight membered rings with 10 or 11. This is in contrast to the stable cyclic sulfites (43, 57) or sulfates, (44, 58) that result when 10 or 11 are reacted with pyramidal SOF₂ or tetrahedral SO₂Cl₂.

Similarly Me₃SiOCH₂(CF₂)₃CH₂OSiMe₃ (11) is reacted with CH₂Br₂, COF₂, SOF₂, and SO₂Cl₂, in a ratio of 1:1 to form cyclic and acyclic polyfluoro diethers $CF_2CF_2CH_2OCH_2$ -OCH₂CF₂ (55), FC(O)OCH₂(CF₂)₃CH₂OC(O)F (56), CF_2CF_2 -CH₂OS(O)OCH₂CF₂ (57), and $CF_2CF_2CH_2OSO_2OCH_2CF_2(58)$ in high yields. Of the diethers that are reported here only 41 and 55 are in the literature having resulted from the reaction of the respective diols with formaldehyde in the presence of H₂SO₄.²⁰ No spectral data are reported for these compounds.

Ethers 17 and 38–40 as well as $CH_3CH(CF_3)OC_6F_4CN$, 59, are prepared by reacting the corresponding polyfluoroalcohol with C_6F_5CN in the presense of alkali carbonate as an HF-acceptor. However, the yields obtained when siloxanes are used as the nucleophile are superior. The nonfluorinated analogue of 18 results when an excess of $C_6H_5OSiMe_3$ is reacted with C_6F_5CN forming $(C_6H_5O)_5C_6CN$, 60.

Although there are many methods for introducing polyfluoroalkoxy groups into active halogenated compounds, such as direct reaction of the appropriate alcohol in the presence of a base, or metallation of the alcohol to form sodium or lithium salts, these methods, although widely used, are not free from disadvantages. The procedures involve filtration and purification of products from the salts which form or often the metallated alkoxides are only moderately stable. To overcome these difficulties, silicon mediated synthesis of polymers was attempted initially on silylated diphenols.²¹ The method was later extended to polyfluorodiols and used to prepare macrocyclic polyfluoroethers in a stepwise manner.²² The stable, easily synthesized, somewhat less reactive siloxy compounds

⁽²⁰⁾ Pattison, D. B. J. Org. Chem. 1957, 22, 662; Adolph, H. G.; Goldwasser, J. M. J. Polym. Sci. 1987, 25A, 805.

⁽²¹⁾ Kricheldorf, H. R.; Bier, G. Polym. Chem. Ed. 1983, 21, 2283.

⁽²²⁾ Farnham, W. M.; Roe, D. C.; Dixon, D. A.; Calabrase, J. C. J. Am. Chem. Soc. 1990, 112, 7707.

Table 1. Reactions of (Me₃SiOCH₂CF₂)₂, 10

Patel et al.

Reactant	Product	Reactant	Product
CH ₂ Br ₂	CF2CH2OCH2OCH2CF2 41	POCI,	CF ₂ CH ₂ OP(O)FOCH ₂ CF ₂ 48
Br ₂ CHCHBr ₂	CF2CH2OCHOCH2CF2CF2CH2OCHOCH2CF2	C,F,N	NC ₅ F ₄ OCH ₂ (CF ₂) ₂ CH ₂ OC ₅ F ₄ N
	42		49
SOF2	∠F₂CH₂OS(O)OCH₂CF₂ 43	CF ₃ SO ₂ F	CF ₃ SO ₂ OCH ₂ (CF ₂) ₂ CH ₂ OSO ₂ CF ₃ 50
SO ₂ Cl ₂	CF2CH2OSO2OCH2CF2 44	$F \bigoplus_{F} I$	$I \bigoplus_{F} O-CH_2-CF_2 \\ O-CH_2-CF_2$
			51
COF2	FC(O)OCH ₂ CF ₂ CF ₂ CH ₂ OC(O)F 45	ICF2CF2OCF2CF2SO2F	(ICF2CF2OCF2CF2S02OCH2CF2+2 52
C ₆ F ₅ CN	p-CNC ₆ F ₄ OCH ₂ CF ₂ CF ₂ CH ₃ OC ₆ F ₄ CN-p 46	$C(O)F(CF_2)_3C(O)F$	CF ₂ CH ₂ OC(O)(CF ₂) ₃ C(O)OCH ₂ CF ₂ 53
(COF) ₂	ĊF ₂ CH ₂ OC(O)C(O)OCH ₂ CF ₁ 47	$F \bigoplus_{F}^{Br} F_{F}$	$\begin{array}{c} CF_2-CH_2-O & Br & O-CH_2-CF_2 \\ & & \\ CF_2-CH_2-O & Br & O-CH_2-CF_2 \end{array}$
			54

coupled with the ease of purification of the reaction products make this alternative route very attractive.

Experimental Section

Materials. $[CF_2CH_2OH]_2$ (gift from 3M), and $CF_2(CF_2CH_2OH)_2$ (PCR) are purified by sublimation prior to use. CsF, SOF₂, COF₂, (COF)₂, C₅F₅N, perfluoroglutaryl fluoride, perfluorocyclobutene, C₆F₆, and all starting alcohols are purchased from (PCR). Hexamethyldisilazane, C₆F₅CN, POCl₃, CF₃C₆F₅, CH₃I, SO₂Cl₂ (Aldrich), CH₂Br₂, Br₂CHCHBr₂ (Eastman Kodak), (CNF)₃, 1,2-diiodotetrafluorobenzene (Alfa), 1,4-dibromotetrafluorobenzene (SCM Chemicals), and CF₃SO₂F (gift from 3M) are used as received. ICF₂CCF₂OCF₂CF₂SO₂F is made by the literature method.²³ The preparation of siloxanes is described elsewhere.^{6.11.15} The solvents THF, acetonitrile and diglyme are dried and distilled prior to use according to standard procedures.

General Procedure. A conventional vacuum system comprised of a Pyrex glass vacuum line equipped with Heise Bourdon tube and Televac thermocouple gauges is used to handle gases and volatile liquids. Reactions are performed in thick-walled 100 mL roundbottomed flasks fitted with Teflon stopcocks.

Products are separated and purified by distillation or crystallization. Infrared spectra are recorded on a Perkin-Elmer 1710 FTIR spectrometer equipped with an IBM PS-2 data station by using KBr disks or a 10 cm gas cell equipped with KBr disks. The ¹H and ¹⁹F NMR spectra are obtained with Bruker AC 200 or AC 300 Fourier transform NMR spectrometers using CDCl₃ or CD₃CN as solvent and Me₄Si and CFCl₃ as references. Mass spectra are obtained with a VG 7070HS GC/MS spectrometer by using electron impact or chemical ionization techniques. Elemental analyses are performed by Beller Mikroanalytisches Laboratorium, Göttingen, Germany.

Preparation of Siloxanes (1–11). Siloxanes 1 to 11 are prepared by the reaction of the respective alcohols (40 mmol) with $(Me_3Si)_2NH$ (45 mmol) in a 100 mL round-bottomed flask fitted with a reflux condenser. A pinch of sodium saccharin is added as catalyst to drive the reaction to completion. After the initial evolution of ammonia subsides, the mixture is heated to 80 °C and maintained at that temperature for 8–10 h. The siloxanes are obtained as colorless air stable liquids upon vacuum distillation. They are characterized by comparing their spectral data with the literature 6,11,15

General Procedure for the Preparation of Ethers (12-58). In a typical reaction, 5 mL of acetonitrile or THF or diglyme, a catalytic amount of CsF and siloxane 1-11 (6-10 mmol) are combined in a 100 mL round-bottomed Pyrex flask equipped with a Teflon stopcock. The mixture is frozen at -196 °C and the vessel is evacuated. Five to 10 mmol of respective substrate is then condensed into the flask and the mixture is allowed to warm slowly to 25 °C. The mixture is stirred for 10-12 h at 60-70 °C. The products are separated by low temperature trap-to-trap distillation or by extracting the residue with diethyl ether. The yields of the products (12-58) range from 35-80%.

Properties of CH₂(OCH₂CF₃)₂ (12). The preparation of 12 is reported¹⁷ but no details are given nor are spectral data presented. Spectral data obtained are as follows. IR (neat): 2961 m, 1438 m, 1377 m, 1284 s, 1256 s, 1159 vs, 1098 m, 1065 s, 965 s, 919 w, 872 s, 850 s, 754 m, 665 w, 642 w cm⁻¹; NMR: ¹⁹F, δ -75 (CF₃, t, ³J_{H-F} = 7.7 Hz); ¹H, δ 4.67 (OCH₂O, 2H, s); 3.7 (OCH₂, 4H, q); CI MS [*m/e* (species) intensity]: 211 (M⁺ - H) 1.6; 193 (M⁺ - F) 7.8; 174 (M⁺ - 2F) 3.1; 143 (M⁺ - CF₃) 1.7; 113 (M⁺ - OCH₂CF₃) 73.9; 101 (CF₃CH₂OH⁺ + 1) 6.3; 93 (COCH₂CF⁺ + 1) 6.5; 83 (C₂F₃H₂⁺) 11.4; 81 (C₂F₃⁺) 61.3; 75 (CH₂OCH₂CF⁺) 86; 73 (C₃H₂FO⁺) 100; 69 (CF₃⁺) 9.4.

Properties of $C_3N_3(OCH_2CF_3)_3$ (13). The preparation of 13 is reported¹⁸ but no details are given nor are spectral data presented (mp 45 °C). Spectral data obtained are as follows. IR (KBr disk): 3003 m, 2945 m, 1620 s, 1583 m, 1567 s, 1499 m, 1445 m, 1413 s, 1376 vs, 1290 s, 1273 w, 1242 w, 1177 s, 1131 s, 1085 s, 1040 s, 963 w, 919 s, 815 m, 750 m, 621 w cm⁻¹; NMR: ¹⁹F, δ -74.6 (CF₃, t, ³J_{H-F} = 7.8 Hz); ¹H, δ 4.88 (CH₂, q); CI MS [*m/e* (species) intensity]: 376 $(M^+ + 1)$ 1.8; 356 $(M^+ - F)$ 1.6; 315 $(M^+ - 3HF)$ 13.2; 307 $(M^+ - F)$ $CF_3 + 1$) 2.2; 293 (M⁺ - $CH_2CF_3 + 1$) 2.7; 276 (M⁺ - OCH_2CF_3) 10.8; 268 ($M^+ - CF_3 - 2F$) 5.1; 263 ($M^+ - COCH_2CF_3 - H$) 1.4; 250 (M⁺ - NCOCH₂CF₃) 2.2; 237 (M⁺ - 2CF₃) 5.7; 231 (M⁺ - $NCOCH_2CF_3 - F$) 10.7; 212 (M⁺ - $NCOCH_2CF_3 - 2F$) 73.8; 193 $(M^+ - OCH_2CF_3 - CH_2CF_3) 4.3; 177 (M^+ - 2OCH_2CF_3) 37.9; 159$ (MH⁺ - 2OCH₂CF₃ - F) 21.2; 149 (MH⁺ - NCOCH₂CF₃ - CH₂CF₃ - F) 44.4; 133 ($C_4H_2F_2N_2O^+$ + 1) 12.8; 119 ($C_3HF_2N_2O^+$) 49.3; 99 $(CF_{3}CH_{2}O^{+})$ 15.2; 90 $(C_{3}H_{2}F_{2}O^{+})$ 100; 83 $(CH_{2}CF_{3}^{+})$ 11.1; 81 $(C_{2}F_{3}^{+})$ 11; 69 (CF_3^+) 12.9.

⁽²³⁾ Persulfonic Acid Group, Shanghai Institute of Organic Chemistry, Acad. Sin. Sci. Sin. (Engl. Ed.) 1978, 21, 773.

Properties of C(OCH₂CF₃)₄ (14). This compound melts at 90– 92 °C. Spectral data are as follows. IR (KBr disk): 2968 m, 1440 m, 1380 m, 1290 s, 1261 s, 1160 s, 1091 m, 1060 s, 961 m, 925 w, 874 s, 852 s, 750 w cm⁻¹; NMR: ¹⁹F, δ -75.3 (CF₃, t, ³J_{H-F} = 7.8 Hz); ¹H, δ 4.1 (CH₂, q) CI [*m/e* (species) intensity]: 319 (M⁺ - CF₃ -HF) 2.9; 309 (M⁺ - OCH₂CF₃) 4.9; 291 (MH⁺ - OCH₂CF₃ - F) 2.3; 281 (M⁺ - CF₃ - 3F - H) 1.5; 269 (M⁺ - 2CF₃ - H) 1.5; 254 (M⁺ - 2CF₃ - CH₂ - 2H) 3.3; 229 (M⁺ - 2CF₃ - 2HF - H) 14.1; 226 (M⁺ - OCH₂CF₃ - CH₂CF₃) 22.1; 211 (M⁺ - 2OCH₂CF₃ + 1) 57.6; 188 (C₃H₄F₄O₃⁺) 2.9; 173 (C₃H₅F₄O₂⁺) 8.2; 169 (C₃HF₄O₂⁺) 5.6; 147 (C₃HF₂O₃⁺) 100; 126 (C₃HF₃O₂⁺) 20.1; 100 (CF₃CH₂OH⁺) 2.8; 83 (CH₂CF₃⁺) 62.5; 81 (CF₂CH₂OH⁺) 68.9; 69 (CF₃⁺) 31.3.

Properties of $\dot{C}F_2C(OCH_2CF_3)=C(OCH_2CF_3)\dot{C}F_2$ (15). This compound melts at 141 °C. Spectral data compared with literature¹⁹ are as follows. IR (KBr disk): 2973 m, 1749s, 1459 m, 1416 m, 1377 vs, 1300 s, 1377 vs, 1300 s, 1281 s, 911 vs, 838 m, 736 vs, 651 s, 554 w cm⁻¹; NMR: ¹⁹F, δ -75.2 (CF₃, 6F, t, ³J_{H-F} = 7.6 Hz); -114.5 (CF₂, 4F, s); ¹H, δ 4.44 (CH₂, 4H, q); CI MS [*m/e* (species) intensity]: 322 (M⁺) 16.4; 303 (M⁺ - F) 55.7; 83 (CH₂CF₃⁺) 100. Anal. Calcd for C₈H₄F₁₀O₂: C, 29.81; F, 59.0; H, 1.24. Found: C, 30.1; F, 58.7; H, 1.31.

Properties of CF₂C(OCH₂CF₃)=C(F)CF₂ (16). Spectral data compared with literature¹⁹ are as follows. IR (neat): 2960 m, 2901 w, 1769 s, 1446 s, 1420 s, 1377 vs, 1283 vs, 1255 s, 1176 vs, 1130 s, 1116 s, 1062.5 vs, 999 s, 985 m, 971 m, 889 m, 848 s, 758 w, 689 w, 671 w, 660 m cm⁻¹; NMR: ¹⁹F, δ -75.1 (CF₃, 3F, t, ³J_{H-F} = 7.8 Hz); -117.2 (CF₂, 2F, m); -119.1 (CF₂, 2F, m); -137.0 (CF, 1F, m); ¹H, δ 4.5 (CH₂, 2H, q); CI MS [*m/e* (species) intensity]: 242 (M⁺) 4.2; 223 (M⁺ - F) 12.7; 173 (M⁺ - CF₃) 2.7; 147 (C₃F₅O⁺) 100.

Properties of 4-CF₃CH₂OC₆F₄CN (17). This compound boils at 95–97 °C/6 Torr (35% yield). Spectral data are as follows. IR (KBr): 2247 cm⁻¹ (CN). NMR: ¹⁹F, -75.4 (3F); -132.4 (2F); -153.7 (2F); ¹H, 4.61 (q, ³J_{H-F} = 8 Hz). CI MS [*m/e* (species) intensity]: 274 (M⁺ + 1) 7.3; 273 (M⁺) 2.1; 254 (M⁺ - F) 0.8; 204 (M⁺ - CF₃) 0.4; 99 (CF₃CH₂O⁺) 1.34; 83 (CF₃CH₂⁺) 4.6; 79 (CF₂CHO⁺) 2.8; 69 (CF₃⁺) 22.9; 59 (CFCO⁺) 100. A small amount of higher boiling product (b.p. 125–130 °C/6mm) was identified by EI MS (M⁺ + 1, 354, 100%) to be bis(trifluoroethoxy)trifluorobenzonitrile.

Properties of (CF₃CH₂O)₅C₆CN (18). This compound melts at 70– 72 °C (40% yield). Spectral data are as follows. IR (KBr): 2241 cm⁻¹ (CN). NMR: ¹⁹F, δ -74.7 (t, ³J_{H-F} = 8 Hz); -75.0 (t, ³J_{H-F} = 8 Hz); 1H, 4.39 (q); 4.53 (q, J_{H-F} = 8 Hz); 4.54 (q, J_{H-F} = 8 Hz); EI MS [*m/e* (species) intensity]: 593 (M⁺) 75; 574 (M⁺ - F) 4; 510 (M⁺ -CF₃CH₂) 99.9; 83 (CF₃CH₂⁺) 100. Anal. Calcd for C₁₇H₁₀F₁₅O₅N: C, 34.4; H, 1.69; N, 2.36; F, 48.04. Found: C, 34.86; H, 1.71; N, 2.50; F, 46.2.

Properties of NCC₆F₄OC(CH₃)₂CF₃ (19). This compound is recrystallized from heptane (33% yield, mp 62–64 °C). Spectral data are as follows. IR (film): 2243 m, 1646 m, 1495 s, 1439 s, 1401 m, 1381 m, 1331 m, 1169 s, 1125 s, 991 s, 968 s cm⁻¹; NMR: ¹⁹F, δ -82.8 (CF₃, 3F, s); -133.0 (Ar–F, 2F, m); -147.6 (Ar–F, 2F, m); ¹H, δ 1.52 (CH₃, 6H, s); CI MS [*m/e* (species) intensity]: 301 (M⁺) 0.4; 286 (M⁺ – CH₃) 2.5; 232 (M⁺ – CF₃) 7.4; 191 (NCC₆F₄O⁺ + 1) 100; 174 (NCC₆F₄⁺) 2.7; 162 (NCC₅F₄⁺) 4.7; 143 (NCC₅F₃⁺) 9.4; 91 (C₄H₃F₂⁺) 58.8; 69 (CF₃⁺) 5.9.

Properties of NCC₆F₃[OC(CH₃)₂CF₃]₂ (20). This compound is recrystallized from hexane (34% yield, mp 100–102 °C). Spectral data are as follows. IR (film): 2926 m, 2243 m, 1646 m, 1494 s, 1438 m, 1401 m, 1169 s, 1125 s, 992 s, 968 s cm⁻¹; NMR: ¹⁹F, δ –82.0 (CF₃, 3F, s); -82.6 (CF₃, 3F, s); -132.6 (Ar–F, 1F, m); -134.3 (Ar–F, 1F, m); -146.0 (Ar–F, 1F, m); ¹H, δ 1.50 (CH₃, s); 1.53 (CH₃, s); CI MS [*m/e* (species) intensity]: 410 (M⁺ + 1) 5.8; 409 (M⁺) 41.8; 340 (M⁺ - CF₃) 2.4; 314 (M⁺ - CF₃ - CN) 1.9; 299 (M⁺ - C₄H₆F₃ + 1) 15.4; 280 (M⁺ - C₄H₆F₄ + 1) 11.6; 230 (M⁺ - C₄H₆F₃ - CF₃ + 1) 1.9; 204 (M⁺ - C₄H₆F₃ - CF₃ - CN + 1) 7.3; 91(C₄H₃F₂⁺) 19.5. Anal. Calcd for C₁₅H₁₂F₉O₂N: C, 44.01; H, 2.93; F, 41.81. Found: C, 44.26; H, 2.94; F, 41.4.

Properties of C₆F₅OC(CH₃)₂CF₃ (21). This compound is distilled at 112-114 °C (71.1% yield). Spectral data are as follows. IR (film): 2881 m, 1639 m, 1515 s, 1474 m, 1398 m, 1380 m, 1233 m, 1171 s, 1128 s, 1029 s, 995 s, 952 m, 845 m, 837 m, cm⁻¹; NMR: ¹⁹F,

δ -82.9 (CF₃, 3F, s); -151.4 (p-F, 2F, m); -160.1 (m-F, 1F, m); -162.5 (o-F, 2F, m); ¹H, δ 1.53 (CH₃, s); EI MS [*m/e* (species) intensity]: 294 (M⁺) 0.6; 279 (M⁺ - CH₃) 2.0; 275 (M⁺ - F) 27.5; 225 (M⁺ - CF₃) 6.2; 184 (C₆F₅OH⁺) 100; 183 (C₆F₅O⁺) 7.3; 167 (C₆F₅⁺) 3.1; 155 (C₅F₅⁺) 10.9; 136 (C₅F₄⁺) 16.4; 117 (C₅F₃⁺) 11.3; 111 (C₄H₆F₃⁺) 30.5; 96 (C₃H₃F₃⁺) 1.6; 81 (C₂F₃⁺) 58.8; 69 (CF₃⁺) 15.0.

Properties of CF₃C₆F₄OC(CH₃)₂CF₃ (22). This compound is distilled at 88–90 °C (73.5% yield). Spectral data are as follows. IR (film): 1655 m, 1505 s, 1430 m, 1400 m, 1382 m, 1345 s, 1238 s, 1172 s, 1129 s, 995 s, 888 m, 718 m, cm⁻¹; NMR: ¹⁹F, δ -56.8 (ArCF₃, 3F, s); -83.2 (CF₃, 3F, s); -141.8 (Ar-F, 2F, m); -149.6 (Ar-F, 2F, m); ¹H, δ 1.53 (CH₃, s); EI MS [*m/e* (species) intensity]: 329 (M⁺ - CH₃) 3.1; 325 (M⁺ - F) 17.3; 275 (M⁺ - CF₃) 8.6; 234 (C₇F₇OH⁺) 100; 217 (C₇F₇⁺) 5.1; 215 (C₇F₆OH⁺) 62.3; 214 (C₇F₆O⁺) 4.4; 117 (C₅F₃⁺) 9.0; 111 (C₄H₆F₃⁺) 15.0; 91 (C₄H₅F₂⁺) 35.5; 69 (CF₃⁺) 10.4.

Properties of ClC₆F₄OC(CH₃)₂CF₃ (23). This compound is distilled at 145 °C (53.5% yield). Spectral data are as follows. IR (film): 2956 w, 1504 s, 1489 m, 1399 m, 1380 m, 1391 m,1232 s, 1171 s, 1128 s, 982 s, 953 m, 894 s, 888 m cm⁻¹; NMR: ¹⁹F, δ 82.6 (CF₃, 3F, s); -141.8 (Ar-F, 2F, m); -150.2 (Ar-F, 2F, m); ¹H, δ 1.47 (CH₃, s); CI MS [*m/e* (species) intensity]: 312/310 (M⁺) 1.2/3.1; 293/291 (M⁺ - F) 22.3/68.1; 243/241 (M⁺ - CF₃) 5.3/11.1; 202/200 (ClC₆F₄OH⁺) 26.9/100; 185/183 (ClC₆F₄⁺) 1.5/3.7; 111 (C₄H₆F₃⁺) 47.1; 91 (C₄H₅F₂⁺) 66.3; 69 (CF₃⁺) 9.4.

Properties of NC₅F₄OC(CH₃)₂CF₃ (24). This compound is distilled at 107–109 °C (76.4% yield). Spectral data are as follows. IR (film): 2884 m, 1633 m, 1555 s, 1485 m, 1417 m, 1381 m, 1352 s, 1281 s, 1248 m, 1148 s, 1058 s, 953 s cm⁻¹; NMR: ¹⁹F, δ –82.9 (CF₃, 3F, s); -89.4 (Py-F, 2F, m); -156.2 (Py-F, 2F, m); ¹H, δ 1.50 (CH₃, s); CI MS [*m/e* (species) intensity]: 278 (M⁺ + 1) 3.5; 277 (M⁺) 3.6; 258 (M⁺ - F) 24.8; 208 (M⁺ - CF₃) 5.5; 167 (NC₅F₄OH⁺) 100; 166 (NC₅F₄O⁺) 94.4; 148 (NC₅F₃OH⁺) 32.1; 111 (C₄H₆F₃⁺) 6.7; 91 (C₄H₅F₂⁺) 24.4; 71 (C₄H₄F⁺) 11.7; 69 (CF₃⁺) 14.2.

Properties of $C_6F_3I_2OC(CH_3)_2CF_3$ (25). This compound is distilled at 102 °C/4 × 10⁻⁴ Torr (21.6% yield). Spectral data are as follows. IR (film): 2955 m, 1598 m, 1459 s, 1398 s, 1380 s, 1329 s, 1310 s, 1258 s, 1150 s, 1024 s, 953 m, 940 m, 853 s, 813 s, 782 s cm⁻¹; NMR: ¹⁹F, δ -82.4 (CF₃, 3F, s); -92.6 (Ar-F, 1F, m); -105.6 (Ar-F, 1F, m); -140.8 (Ar-F, 1F, m); ¹H, δ 1.46 (CH₃, s); CI MS [*m/e* (species) intensity]: 511 (M⁺ + 1) 1.5; 510 (M⁺) 11.5; 441 (M⁺ - CF₃) 1.5; 400 (C₆F₃I₂O⁺) 100; 399 (C₆F₃I₂O⁺) 5.5, 371 (C₆F₃I₂O⁺ - CO) 4.5; 273 (C₆F₃IOH⁺) 21.0; 146 (C₆F₃OH⁺) 25.2; 145 (C₆F₃O⁺) 1.7; 117 (C₅F₃⁺) 22.4; 98 (C₃F₂⁺) 10.1.

Properties of c-C₄F₅OC(CH₃)₂CF₃ (26). This compound is collected in a trap cooled to -40 °C (46.8% yield). Spectral data are as follows. IR (film): 3005 m, 1757 m, 1479 m, 1389 s, 1384 s, 1320 m, 1188 s, 1146 s, 1024 s, 981 m, 731 m cm⁻¹; NMR: ¹⁹F, δ -83.0 (CF₃, 3F, s); -117.4 (CF₂, 2F, m); -120.3 (CF₂, 2F, m); -130.4 (C=CF, 1F, m); ¹H, 1.59 (CH₃, s); CI MS [*m/e* (species) intensity]: 251 (M⁺ - F) 17.0; 231 (M⁺ - HF₂) 4.2; 160 (M⁺ - C(CF₃)(CH₃)₂ + 1) 1.3; 143 (C₄F₅⁺) 1.3; 141 (C₄F₄O⁺ + 1) 25.2; 111 (C(CF₃)(CH₃)₂⁺) 14.7; 91 (C₄H₅F₂⁺) 100; 89 (CF₂CO⁺ + 1) 11.4; 69 (CF₃⁺) 4.4; 59 (CFCO⁺) 8.0.

Properties of NCC₆F₄OC(CF₃)₂CH₃ (27). This compound is recrystallized from heptane (74.6% yield, mp 56–58 °C). Spectral data were as follows. IR (film): 2248 m, 1650 m, 1506 s, 1469 m, 1442 m, 1400 m, 1327 s, 1303 s, 1231 s, 1140 s, 1088 s, 996 s, 965 s cm⁻¹; NMR: δ –77.2 (CF₃, 6F, s); –131.5 (Ar–F, 2F, m); –146.3 (Ar–F, 2F, m); ¹H, δ 1.66 (CH₃, 3H, s); CI MS [*m/e* (species) intensity]: 356 (M⁺ + 1) 100; 355 (M⁺) 23.0; 336 (M⁺ – F) 8.9; 191 (NCC₆F₄-OH⁺) 31.3; 190 (NCC₆F₄O⁺) 1.2; 162 (NCC₆F₄O⁺ – CO) 1.6; 143 (NCC₆F₄O⁺ – CO – F) 2.2; 69 (CF₃⁺) 4.6. Anal. Calcd for C₁₁H₃F₁₀-NO: C, 37.20; H, 0.85; F, 53.50. Found: C, 37.22; H, 0.87; F, 53.5.

Properties of C₆F₅OC(CF₃)₂CH₃ (28). This compound is distilled at 78-80 °C (66.8% yield). Spectral data are as follows. IR (film): 2987 w, 1533 s, 1458 m, 1389 m, 1312 s, 1232 s, 1180 s, 1089s, 1019 s, 702 m cm⁻¹; NMR: ¹⁹F, δ -77.5 (CF₃, 3F, s); -149.9 (p-F, 2F, m); -156.8 (m-F, 1F, m); -161.9 (o-F, 2F, m); ¹H, δ 1.62 (CH₃, s); EI MS [*m/e* (species) intensity]: 348 (M⁺) 5.2; 186 (C₆F₆⁺) 100; 184 (C₆F₅-OH⁺) 16.3; 183 (C₆F₅O⁺) 6.9; 167 (C₆F₅⁺) 16.9; 155 (C₆F₅O⁺ - CO) 17.2; 136 (C₃F₄⁺) 12.0; 117 (C₅F₃⁺) 77.3; 98 (C₅F₂⁺) 8.2.

Properties of C₆F₃I₂OC(CF₃)₂CH₃ (29). This compound is distilled

at 85–88 °C/4 × 10⁻⁴ Torr (19.5% yield). Spectral data are as follows. IR (film): 2928 w, 1477 s, 1437 s, 1397 s, 1368 s, 1313 s, 1240 s, 1139 s, 1090 s, 1024 s, 907 s, 879 m, 815 s, 788 s cm⁻¹; NMR: ¹⁹F, δ –77.2 (CF₃, 6F, s); –92.1 (Ar–F, 1F, m); –104.8 (Ar–F, 1F, m); –140.1 (Ar–F, 1F, m); ¹H, δ 1.59 (CH₃, s); CI MS [*m/e* (species) intensity]: 565 (M⁺ + 1) 9.9; 564 (M⁺) 100; 437 (M⁺ – I) 2.2; 400 (C₆F₃I₂OH⁺) 38.8; 399 (C₆F₃I₂O⁺) 91.4; 371 (C₆F₃I₂O⁺ – CO) 41.7; 273 (C₆F₃IOH⁺) 21.9; 272 (C₆F₃IO⁺) 1.2; 244 (C₆F₃IO⁺ – CO) 7.7; 146 (C₆F₃OH⁺) 44.2; 145 (C₆F₃O⁺) 13.9; 129 (C₆F₃⁺) 12.1; 117 (C₅F₃⁺) 78.0; 98 (C₅F₂⁺) 35.8; 77 (CH₃CCF₂⁺) 38.8

Properties of CF₃C₆F₄OC(CF₃)₂C₆H₅ (30). This compound is distilled at 69–71 °C/10⁻³ Torr (66.3% yield). Spectral data are as follows. IR (film): 3073 w, 1654 m, 1505 m, 1433 m, 1347 m, 1234 s, 1195 s, 1155 s, 1119 s, 998 s, 942 m, 879 m, 727 m cm⁻¹; NMR: ¹⁹F, δ –56.6 (CF₃, 3F, s); –71.2 (CF₃, 6F, s); –131.5 (Ar–F, 2F, m); –146.7 (Ar–F, 1F, m); ¹H, δ 7.66–7.42 (Ar–H, m); CI MS [*m/e* (species) intensity]: 441 (M⁺ – F) 4.0; 421 (M⁺ – HF₂) 1.2; 234 (CF₃C₆F₄OH⁺) 8.5; 227 (C₆H₅C(CF₃)₂⁺) 100; 217 (CF₃C₆F₄⁺) 1.06; 215 (CF₃C₆F₄OH⁺ – F) 20.9; 207 (C₆H₅C(CF₃)₂⁺ – HF) 16.0; 198 (CF₃C₆F₄⁺ – F) 1.4; 159 (C₆H₅C(CF₃)⁺ + 1) 2.0; 69 (CF₃⁺) 3.4; 59 (CFCO⁺) 1.8.

Properties of NCC₆F₄OC(CF₃)₂C₆H₅ (31). This compound was distilled at 83-85 °C/10⁻³ Torr (68.6% yield). Spectral data are as follows. IR (film): 3073 w, 2247 m, 1648 m, 1502 m, 1443 m, 1323 m, 1225 s, 1140 s, 1003 s, 943 s, 722 m, cm⁻¹; NMR: ¹⁹F, δ -71.0 (CF₃, 3F, s); -132.7 (Ar-F, 2F, m); -145.3 (Ar-F, 1F, m); CI MS [*m/e* (species) intensity]: 418 (M⁺ + 1) 17.1; 398 (M⁺ - F) 2.5; 271 (M⁺ - CF₃ - C₆H₅) 4.7; 227 (C₆H₅C(CF₃)₂⁺) 100; 208 (C₆H₅C(CF₃)-(CF₂)⁺) 18.5; 207 (C₆H₄C(CF₃)(CF₂)⁺) 14.1; 190 (NCC₆F₄O⁺) 2.03; 175 (NCC₆F₄H⁺) 18.9; 159 (C₆H₅C(CF₃)⁺ + 1) 2.0; 77 (C₆H₅⁺) 3.3; 69 (CF₃⁺) 12.4.

Properties of c-C₄F₅OC(CF₃)₂C₆H₅ (32). This compound was distilled at 66–68 °C (38.2% yield). Spectral data are as follows. IR (film): 3075 w, 1759 s, 1658 m, 1385 s, 1299 s, 1257 s, 1230 s, 1024 s, 1142 s, 1064 s, 1010, s, 970 m, 958 m, 726 m, 705 m cm⁻¹; NMR: ¹⁹F, δ –72.3 (CF₃, 6F, s); –118.6 (CF₂, 2F, m); –121.0 (CF₂, 2F, m); –125.6 (C=CF, 1F, m); ¹H, δ 7.51 (C₆H₅, m); CI MS [*m/e* (species) intensity]: 386 (M⁺) 0.9; 367 (M⁺ – F) 11.3; 347 (M⁺ – HF₂) 31.8; 317 (M⁺ – CF₃) 1.2; 227 (C₆H₅C(CF₃)₂⁺) 100; 208 (C₆H₅C(CF₃)(CF₂)⁺) 8.3; 207 (C₆H₄C(CF₃)(CF₂)⁺) 11.9; 159 (C₄F₅O⁺) 1.7; 143 (C₄F₅⁺) 4.5; 69 (CF₃⁺) 9.3.

Properties of $C_6H_5C(CF_3)_2OCH_2C_6H_5$ (33). This compound was distilled at 90 °C/10⁻² Torr (88.3% yield). Spectral data are as follows. IR (film): 3037 w, 1499 s, 1455 s, 1393 s, 1217 s, 1126 s, 1088 s, 1011 s, 945 s, 764 m, 737 m, 719 s cm⁻¹; NMR: ¹⁹F, δ 70.8 (CF₃, 6F, s); ¹H, δ 7.39–7.66 (C₆H₅, 10H, m); 4.66 (CH₂, 2H, s); CI MS [*m/e* (species) intensity]: 257 (M⁺ – C₆H₅) 1.9; 227 (M⁺ – C₆H₅CH₂O) 44.6; 208 (C₆H₅C(CF₃)(CF₂)⁺) 1.8; 159 (C₆H₅C(CF₃)⁺ + 1) 12.8; 107 (C₆H₅CH₂O⁺) 84.3; 91 (C₆H₅CH₂⁺) 100; 77 (C₆H₅⁺) 9.4, 69 (CF₃⁺) 15.2.

Properties of C₆H₅C(CF₃)₂OCH₃ (34). This compound was distilled at 76 °C/10⁻³ Torr (77.7% yield). Spectral data are as follows. IR (film): 3070 w, 2994 w, 2959 m, 2854 w, 1454 m, 1289 s, 1201 s, 1149 s, 1126 s, 1086 s, 999 s, 945 s, 720 s cm⁻¹; NMR: ¹⁹F, δ 71.3 (CF₃, 6F, s); ¹H, δ 7.41–7.54 (C₆H₅, 5H, m); 3.46 (CH₂, 2H, sept, $J_{H^-F} = 1.01$); CI MS [*m/e* (species) intensity]: 258 (M⁺) 12.9; 239 (M⁺ - CF₃) 86.8; 181 (M⁺ - C₆H₅) 3.9; 105 (C₆H₅CO⁺) 13.0; 77 (C₆H₅⁺) 5.2; 69 (CF₃⁺) 12.1.

Properties of NCC₆**F**₄**OC**(**CF**₃)₂**H** (**35**). This compound was distilled at 121 °C (76.5% yield). Spectral data are as follows. IR (film): 2882 m, 1652 m, 1511 m, 1456 m, 1353 m, 1287 s, 1236 s, 1203 s, 1109 s, 1000 s, 855 m, 729 m cm⁻¹; NMR: ¹⁹F, δ -73.9 (CF₃, 6F, s), -131.3 (Ar-F, 2F, m); -152.3 (Ar-F, 2F, m); ¹H, δ 5.00 (OCH, sept, $J_{H-F} = 5.1$); CI MS [*m/e* (species) intensity]: 342 (M⁺ + 1) 5.9; 341 (M⁺) 5.8; 340 (M⁺ - 1) 8.6; 191 (NCC₆F₄OH⁺) 30.5; 190 (NCC₆F₄O⁺) 17.6; 162 (NCC₆F₄O⁺ - CO) 8.9; 175 (NCC₆F₄⁺ + 1) 16.5; 149 (C₆F₄⁺ + 1) 34.0; 79 (CF₂COH⁺) 11.8; 69 (CF₃⁺) 35.9; 59 (CFCO⁺) 100.

Properties of $CF_3C_6F_4OC(CF_3)_2H$ (36). This compound was distilled at 115 °C (61.2% yield). Spectral data are as follows. IR (film): 2989 m, 1660 m, 1512 m, 1435 m, 1369 m, 1346 s, 1299 s,

1243 s, 1153 s, 1112 s, 1038 s, 999 s, 852 m, 718 m cm⁻¹; NMR: ¹⁹F, δ -56.9 (Ar-CF₃, 3F, s); -74.5 (CF₃, 6F, s); -140.0 (Ar-F, 2F, m); -154.5 (Ar-F, 2F, m); ¹H, δ 4.93 (OCH, sept, $J_{H-F} = 5.3$). CI MS [*m/e* (species) intensity]: 385 (M⁺ + 1) 7.2, 384 (M⁺) 59.5, 366 (M⁺ - F + 1) 9.2, 365 (M⁺ - F) 100, 315 (M⁺ - CF₃) 5.6, 233 (M⁺ - C₃F₆H) 20.0, 217 (C₇F₇⁺) 48.9, 205 (C₇F₇O⁺ - CO) 25.6, 69 (CF₃⁺) 37.8.

Properties of NCC₆F₄OC(CF₃)₃ (37). This compound was distilled at 91–93 °C (70.1% yield). Spectral data are as follows. IR (film): 2247 m, 1652 m, 1511 m, 1445 m, 1278 s, 1148 s, 1001 s, 973 s, 854 m, 729 m, cm⁻¹; NMR: ¹⁹F, δ –74.5 (CF₃, 9F, s); -131.5 (Ar–F, 2F, m); -146.7 (Ar–F, 2F, m); CI MS [*m/e* (species) intensity]: 410 (M⁺ + 1) 14.5; 409 (M⁺) 8.9; 390 (M⁺ – F) 1.2; 219 ((CF₃)₃C⁺) 1.6; 190 (M⁺ – C₄F₉) 13.0; 162 (M⁺ – C₄F₉ – CO) 8.9; 143 (M⁺ – C₄F₉ – CO – F) 1.2; 131 (C₃F₃N⁺) 3.8; 105 (C₄F₃⁺) 1.3; 88 (C₃F₂N⁺) 91.1; 86 (C₄F₂⁺) 100; 69 (CF₃⁺) 35.9.

Preparation of Ethers (38–40). A mixture of C_6F_5CN (5.5 g, 30 mmol), siloxane 7 or 8 or 9 (2.4 g, 18 mmol), cesium fluoride (250 mg) and 1,2-dimethoxyethane (10 g) is stirred and heated at 80–90 °C for 4 h. The products **38–40** are obtained in 54 to 74% yield.

Properties of FCH₂CH₂OC₆F₄CN (38). This compound is distilled at 96 °C/1.5 Torr (74% yield). Spectral data are as follows. IR: 2244 cm⁻¹ (CN). NMR: ¹⁹F, δ -133.7 (2F), -154.5 (2F), -186.5 (1F); ¹H, δ 4.5(m, 2H), 4.86(2H). Hydrolysis product is more fully characterized. See compound **62**.

Properties of HCF₂CF₂CH₂OC₆F₄CN (39). This compound is distilled at 132 °C/3.5 Torr (55% yield). Spectral data are as follows. IR (film): 2243 cm⁻¹; NMR: ¹H, δ 4.8 (m, 2H), 6.1 (t, J_{HF} = 32 Hz). Hydrolysis product is more fully characterized. See compound 63.

Properties of $n-C_7F_{15}CH_2OC_6F_4CN$ (40). This compound is distilled at 126 °C/1.5 Torr (54% yield). Spectral data are as follows. IR: 2248 cm⁻¹ (CN). NMR: ¹⁹F, -80.9 (3F), -122.9 (6F), -124.7 (2F), -126.6 (2F), -132.4 (2F), -158.5 (2F) ¹H, δ 4.8(m). Hydrolysis product is more fully characterized. See compound **64**.

Properties of CF₂CH₂OCH₂OCH₂CF₂ (41). Spectral data are as follows. IR (neat): 2986 w, 2948 m, 2912 m, 1447 m, 1392 w, 1377 m, 1293 s, 1236 m, 1206 m, 1145 vs, 1059 s, 970 m, 919 w, 908 w, 710 m, 667 m, 571 w cm⁻¹; NMR: ¹⁹F, δ –127.9 (4F, m); ¹H, δ 4.74 (OCH₂O, 2H, s); 3.86 (CH₂CF₂CF₂CH₂, 4H, m); CI MS [*m/e* (species) intensity]: 175 (M⁺ + 1) 1.2; 174 (M⁺) 2.8; 155 (M⁺ - F) 21.9; 145 (M⁺ - OCH₂ + 1) 21.6; 144 (M⁺ - OCH₂) 6.6; 125 (M⁺ - CF₂ + 1) 35.3; 124 (M⁺ - CF₂) 51.5; 114 (CF₂CF₂CH₂⁺) 8.9; 113 (CF₂CF₂-CH⁺) 20.6; 107 (M⁺ - OCH₂F₂ + 1) 9.8; 95 (C₃F₃H₂⁺) 12.9; 86 (CCFCFC⁺) 100; 77 (CFCFCH₂⁺) 8.3; 64 (C₂H₂F₂⁺) 32.8; 56 (C₃H₄O⁺) 12.4.

Properties of CF2CH2OCHOCH2CF2CF2CH2OCHOCH2CF2 (42).

This compound melts at 70-72 °C. Spectral data are as follows. IR (KBr disk): 2976 m, 1404 w, 1333 w, 1266 m, 1235 s, 1220 m, 1195 m, 1122 vs, 1073 vs, 1013 s, 933 s, 908 s, 783 s, 652 s, 611 m, 554 s cm⁻¹; NMR: ¹⁹F, δ –123.9 (8F, m); ¹H, δ 5.9 (CHCH, 2H, s); 3.88 (CH₂CF₂, 8H, m); CI MS [*m/e* (species) intensity]: 347 (M⁺ + 1) 3.9; 327 (M⁺ - F) 1.1; 265 (M⁺ - OCH₂CF₂ - H) 2.2; 203 (M⁺ - OCH₂(CF₂)₂CH₂ + 1) 4; 189 (C₃H₅F₄O₃⁺) 15.8; 159 (C₄H₃F₄O₂⁺) 6.4; 145 (C₄H₄F₄O⁺ + 1) 100; 124 (C₄F₄⁺) 12.2; 113 (CF₂CF₂CH⁺) 11.4; 100 (C₂F₄⁺) 5.3; 64 (CF₂CH₂⁺) 3.3. Anal. Calcd for C₁₀H₁₀F₈O₄: C, 34.68; F, 43.93; H, 2.89. Found: C, 35.1; F, 44.21; H, 3.01.

Properties of CF₂CH₂OS(O)OCH₂CF₂ (43). Spectral data are as follows. IR (neat): 3009 s, 2968 m, 2946 m, 1448 s, 1378 s, 1352 w, 1275 s, 1230 vs, 1207 vs, 1143 vs, 1106 s, 1031 vs, 991 s, 924 s, 745 s, 707 s, 656 s cm⁻¹; NMR: ¹⁹F, δ -127.3 (4F, m); ¹H, δ 4.48 and 4.09 (4H, m); CI MS [*m/e* (species) intensity]: 210 (M⁺ + 2) 3.1; 209 (M⁺ + 1) 62.4; 189 (M⁺ - F) 12; 179 (M⁺ - OCH₂ + 1) 25.4; 178 (M⁺ - OCH₂) 34; 169 (M⁺ - 2F - H) 2.5; 145 (M⁺ - CF₂CH₂ + 1) 28.1; 144 (M⁺ - SO₂) 1.2; 131 (M⁺ - CH₂SO₂ + 1) 2.5; 114 (CF₂-CF₂CH₂⁺) 26.6; 108 (M⁺ - C₂F₄) 1.1; 100 (C₂F₄⁺) 6.9; 81 (C₂F₃⁺) 5.8; 64 (CF₂CH₂⁺) 100. Anal. Calcd for C₄H₄F₄SO₃: C, 23.07; H, 1.9. Found: C, 22.9; H, 2.10.

Properties of CF₂CH₂OSO₂OCH₂CF₂ (44). Spectral data are as follows. IR (neat): 3003 m, 2945 m, 1445 m, 1422 m, 1397 w, 1376

s, 1255 w, 1228 w, 1188 m, 1152 s, 1060 s, 1040 m, 955 w, 919 w, 748 m cm⁻¹; NMR: ¹⁹F, δ –123.6 (4F, m); ¹H, 3.92 (4H, m); CI MS [*m/e* (species) intensity]: 224 (M⁺) 5.2; 223 (M⁺ – H) 1.2; 186 (M⁺ – 2F) 1.1; 174 (M⁺ – CF₂) 6.9; 161 (M⁺ – SO₂ + 1) 2.2; 159 (M⁺ – SO₂ – H) 2.3; 145 (M⁺ – SO₃ + 1) 12.2; 144 (M⁺ – SO₃) 7.7; 131 (M⁺ – CH₂SO₃ + 1) 5.6; 125 (M⁺ – C₂F₄ + 1) 39.4; 113 (C₃F₄H⁺) 10.2; 105 (C₄F₃⁺) 12.2; 93 (C₃F₃⁺) 10.8; 81 (C₂F₃⁺) 13.1; 64 (CF₂-CH₂⁺) 100.

Properties of FC(O)OCH₂CF₂CF₂CH₂OC(O)F (45). Spectral data are as follows. IR (neat): 3004 m, 2945 m, 1847 vs, 1446 s, 1411 m, 1377 s, 1264 s, 1189 w, 1147 s, 1084 w, 1041 s, 979 m, 919 s, 773 m, 752 m cm⁻¹; NMR: ¹⁹F, δ – 19.9 (COF, 2F, s); -122.4 (CF₂, 4F, m); ¹H, δ 4.55 (4H, m); CI MS [*m/e* (species) intensity]: 235 (M⁺ – F) 4.5; 192 (M⁺ – CO₂F + 1) 3.5; 191 (M⁺ – CO₂F) 58.6; 189 (M⁺ – OCOF – 2H) 18.2; 177 (M⁺ – CH₂OCOF) 4.9; 169 (M⁺ – COF – 2F) 1.9; 155 (C₅H₃F₄O⁺) 6.1; 145 (C₄H₅F₄O⁺) 2.7; 127 (C₄H₃F₄⁺) 18.1; 113 (CF₂CF₂CH⁺) 6.7; 95 (C₃H₂F₃⁺) 4.2; 83 (C₂H₂F₃⁺) 14.8; 81 (C₂F₃⁺) 5.9; 64 (CF₂CH₂⁺) 100. Anal. Calcd for C₆H₄F₆O₄: C, 28.34; F, 44.88; H, 1.57. Found: C, 28.20; F, 45.21; H, 1.90.

Properties of *p***-CNC**₆**F**₄**OCH**₂(**CF**₂)₂**CH**₂**OC**₆**F**₄**CN**-*p* (46). Spectral data are as follows. IR (neat): 2979 m, 2247 s, 1651 s, 1503 s, 1443 s, 1403 s, 1303 m, 1248 m, 1198 s, 1136 s, 998 s, 958 m, 784 w, 756 w cm⁻¹; NMR: ¹⁹F, δ –122.1 (CF₂, 4F, m); –132.1 (CF ortho to CN, 4F, m); –153.6 (CF meta to CN, 4F, m); CI MS [*m/e* (species) intensity]: 537 (M⁺ + 29) 3.3; 523 (M⁺ + 15) 32.4; 509 (M⁺ + 1) 21.5; 508 (M⁺) 100; 317 (M⁺ – OC₆F₄CN – H) 92.1; 297 (MH⁺ – C₆F₄CN – 2F) 2.7; 254 (CF₂CH₂OC₆F₄CN⁺) 25; 204 (CH₂OC₆F₄CN⁺) 18.6; 190 (OC₆F₄CN⁺) 64.2; 174 (C₆F₄CN⁺) 8.7; 162 (C₃F₄CN⁺) 25.8; 143 (C₃F₃CN⁺) 3.6; 124 (C₃F₂CN⁺) 10.6; 108 (C₄H₃F₃⁺) 15.6; 93 (C₃F₃⁺) 5.6; 64 (CF₂CH₂⁻) 19. Anal. Calcd for C₁₈H₄F₁₂N₂O₂: C, 42.51; H, 0.78. Found: C, 43.01; H, 1.1.

Properties of CF₂CH₂OC(O)C(O)OCH₂CF₂ (47). This compound melts at 120 ° C. Spectral data are as follows. IR (KBr disk): 2986 m, 1767 s, 1446 s, 1386 s, 1135 vs, 1021 m, 988 m, 887 m, 787 w, 722 m, 647 w cm⁻¹; NMR: ¹⁹F, δ –121.3 (4F, m); ¹H, δ 3.9 (4H, m); CI MS [*m/e* (species) intensity]: 217 (M⁺ + 1) 2; 216 (M⁺) 3.1; 215 (M⁺ - H) 3.6; 203 (M⁺ - CH₂ + 1) 22.3; 202 (M⁺ - CH₂) 6.9; 197 (M⁺ - F) 2.9; 185 (M⁺ - OCH₂ - H) 3.9; 167 (M⁺ - CF₂ + 1) 11.7; 166 (M⁺ - CF₂) 7.4; 153 (M⁺ - CH₂CF₂ + 1) 4.1; 145 (CH₂CF₂CF₂-CH₂OH⁺) 100; 135 (M⁺ - OCH₂CF₂ - H) 6.7; 125 (C₄H₄F₃O⁺) 57.2; 112 (C₃H₃F₃O⁺) 24.7; 104 (C₄H₂F₂O⁺) 13.8; 91 (C₄H₅F₂⁺) 7.4; 85 (C₄H₂FO⁺) 13.1; 64 (CF₂CH₂⁺) 4.4. Anal. Calcd for C₆H₄F₄O₄: C, 33.3; F, 35.18; H, 1.85. Found: C, 34.0; F, 35.5; H, 2.0.

Properties of CF₂CH₂OP(O)FOCH₂CF₂ (48). Spectral data are as follows. IR (neat): 2871 m, 1480 m, 1462 m, 1394 m, 1354 w, 1245 s, 1160 s, 1080 s, 925 s, 852 m, 782 m, 738 m, 708 w, 674 s cm⁻¹; NMR: ¹⁹F, δ –84.2 (PF, 1F, d, J_{P-F} = 955.6 Hz); -127.5 (CF₂, 4F, m); ¹H, δ 4.5 (4H, m); ³¹P, δ –10.19 (PF, d); CI MS [*m/e* (species) intensity]: 226 (M⁺) 1.4; 225 (M⁺ - H) 9.2; 204 (M⁺ - HF - 2H) 57.1; 185 (M⁺ - 2HF - H) 12.5; 161 (C₃H₂F₄PO⁺) 9.3; 141 (C₃H₄F₂-PO₂⁺) 3.8; 131 (C₃H₃F₄O⁺) 2.2; 114 (C₂F₄CH₂⁺) 17; 113 (C₂F₄CH⁺) 19.3; 108 (C₂H₂FPO₂⁺) 15.6; 101 (C₂F₄⁺ + 1) 9.1; 100 (C₂F₄⁺) 3.5; 95 (C₃H₂F₃⁺) 100; 91 (C₂H₄PO₂⁺) 25.2; 81 (C₂F₃⁺) 22.2; 80 (CF₂-CH₂O⁺) 28.7; 64 (CF₂CH₂⁺) 59.5; 62 (C₂F₂⁺) 34.

Properties of NC₅F₄OCH₂(CF₂)₂CH₂OC₅F₄N (49). Spectral data are as follows. IR (neat): 2978 m, 2895 w, 1645 s, 1603 m, 1511 s, 1484 vs, 1455 s, 1423 m, 1387 m, 1278 m, 1245 s, 1122 vs, 1062 m, 999 m, 964 m, 912 m, 815 w, 788 w, 737 m cm⁻¹; NMR: ¹⁹F, δ –89.9 (CF ortho to N, 4F, m); -158.5 (CF meta to N, 4F, m); -122.8 (4F, m); ¹H, δ 4.8 (4H, m); CI MS [m/e (species) intensity]: 461 (M⁺ + 1) 13.5; 460 (M⁺) 82.3; 441 (M⁺ - F) 1.6; 421 (M⁺ - F - HF) 1.9; 294 (M⁺ - OC₅F₄N) 53.3; 274 (M⁺ - OC₅F₄N) - HF) 10.3; 260 (M⁺ - OC₅F₄N) - CH₂ - HF) 3.1; 230 (NC₃F₄OCH₂CF₂⁺) 65.6; 180 (NC₃F₄-OCH₂⁻) 100; 167 (C₅F₄NOH⁺) 8.6; 150 (C₅F₄N⁺) 73.2; 138 (C₄F₄N⁺) 28.3; 132 (C₃F₃NH⁺) 27; 119 (C₄F₃N⁺) 4.6; 108 (C₃F₃NH⁺) 13.5; 103 (C₂F₄⁺) 28.4; 95 (C₃F₃H₂⁺) 9.6; 93 (C₃F₃⁻) 13.4; 64 (CF₂CH₂⁺) 47.5. Anal. Calcd for C₁₄H₄F₁₂N₂O₂: C, 36.5; F, 49.56. Found: C, 36.9; F, 49.12.

Properties of $CF_3SO_2OCH_2(CF_2)_2CH_2OSO_2CF_3$ (50). This compound melts at 56–58 °C. Spectral data are as follows. IR (KBr disk): 3049 w, 2926 m, 1454 w, 1424 s, 1408 s, 1306 s, 1249 m, 1204

s, 1134 vs, 1032 s, 959 s, 926 m, 822 m, 719 m cm⁻¹; NMR: ¹⁹F, δ -70.0 (CF₃, 6F, s); -116.1 (CF₂, 4F, m); ¹H, δ 5.0 (4H, m); CI MS [*m/e* (species) intensity]: 427 (M⁺ + 1) 1.5; 389 (M⁺ - 2F + 1) 1.3; 317 (M⁺ - CF₃ - 2HF) 1.5; 297 (M⁺ - CF₃ - 3HF) 1.2; 277 (M⁺ - OSO₂CF₃) 3.9; 263 (M⁺ - CH₂OSO₂CF₃) 1.9; 251 (C₃H₂F₇SO₃⁺) 2.7; 213 (C₃H₂F₅SO₃⁺) 2.1; 195 (C₃H₂F₄SO₃⁺ + 1) 5.1; 177 (C₄H₄F₄SO⁺ + 1) 10.5; 149 (CF₃SO₂O⁺) 100; 133 (CF₃SO₂⁺) 3.4; 113 (C₂F₄CH⁺) 99.5; 101 (SCF₃⁺) 15.3; 82 (SCF₂⁺) 3; 69 (CF₃⁺) 27.9. Anal. Calcd for C₆H₄F₁₀S₂O₆: C, 16.9; F, 44.6; H, 0.94. Found: C, 17.1; F, 45.1; H, 1.1.

Properties of F2CH2CO(3,6-difluoro-4,5-diiodo-O-phenylene)-

OCH₂CF₂ (51). This compound melts at 96 °C. Spectral data are as follows. IR (KBr disk): 3093 m, 2962 m, 1635 m, 1464 s, 1432 s, 1400 m, 1359 w, 1307 m, 1254 m, 1194 s, 1138 s, 1118 s, 1079 s, 1040 s, 989 w, 833 s, 689 m cm⁻¹; NMR: ¹⁹F, δ –122.8 (CF₂, 4F, m); –99.6 (aromatic CF, 2F, m); ¹H, δ 4.6 (4H, m); CI MS [*m/e* (species) intensity]: 525 (M⁺ + 1) 12.5; 524 (M⁺) 100; 398 (M⁺ – I + 1) 8.1; 368 (M⁺ – OCH₂I + 1) 14.4; 349 (M⁺ – OCH₂FI + 1) 8.1; 270 (M⁺ – 2I) 8.1; 241 (M⁺ – OCH₂I₂ + 1) 29.2; 213 (M⁺ – 2I – 3F) 11.8; 178 (M⁺ – 2I – COCH₂CF₂) 10; 147 (C₆H₄E₂O₂⁺ + 1) 33.1; 127 (C₆F₂OH⁺) 9.4; 110 (C₆F₂⁺) 6.7; 98 (C₃F₂⁺) 17.9; 86 (C₄F₂⁺) 58.4; 77 (C₃H₂F₂⁺ + 1) 10.6. Anal. Calcd for C₁₀H₄F₆I₂O₂: C, 22.90; F, 21.75; H, 0.76. Found: C, 23.1; F, 22.08; H, 0.54.

Properties of ICF₂^aCF₂^bOCF₂^cCF₂^dSO₂OCH₂(CF₂)₂^eCH₂OSO₂-CF₂^dCF₂^oOCF₂^bCF₂^aI (52). This compound melts at 52–53 °C. Spectral data are as follows. IR (KBr disk): 2985 m, 1428 vs, 1340 s, 1298 s, 1174 vs, 1095 s, 1028 s, 988 s, 955 m8, 912 s, 805 m, 761 m, 736 s, 652 m cm⁻¹; NMR: ¹⁹F, δ –65.6 (a, 4F, m); -82.4 (b, 4F, m); -85.5 (c, 4F, m); -114.2 (d, 4F, m); -120.8 (e, 4F, m); ¹H, δ 4.7 (4H, m); CI MS [*m/e* (species) intensity]: 975 (M⁺ + 1) 23.5; 974 (M⁺) 8.8; 955 (M⁺ - F) 1.7; 731 (M⁺ - OCF₂CF₂OI 1; 615 (M⁺ -OCF₂CF₂OCF₂CF₂I) 31.1; 551 (M⁺ - OSO₂CF₂CCF₂OCF₂CF₂I) 69.9; 487 (ICF₂CF₂OCF₂CF₂SO₂OCH₂CF₂⁺) 15.1; 407 (ICF₂CF₂OCF₂CF₂-SO₂⁺) 14; 369 (ICFCFOCF₂CF₂SO₂⁺) 1; 343 (ICF₂CF₂OCF₂CF₂⁺) 100.

Properties of CF₂CH₂OC(O)(CF₂)₃C(O)OCH₂CF₂ (53). Spectral data are as follows. IR (neat): 1791 vs, 1455 m, 1403 m, 1325 s, 1146 s, 1140 s, 1078 m, 969 w, 917 m, 782 w, 747 w cm⁻¹; NMR: ¹⁹F, δ –118.5 (4F, s); –122.0 (2F, s); –123.8 (CH₂(CF₂)₂CH₂, 4F, m); ¹H, δ 4.8 (4H, m); CI MS [*m/e* (species) intensity]: 367 (M⁺ + 1) 11.4; 334 (M⁺ - CH₂F + 1) 3.9; 241 (M⁺ - C₄F₄H) 100; 223 (M⁺ - C₂F₄CO₂ + 1) 18.1; 209 (M⁺ - C₂F₄CO₂CH₂ + 1) 16.9; 195 (C₃F₆-CO₂⁺ + 1) 36; 163 (C₄F₆⁺ + 1) 15; 145 (C₂F₄CO₂⁺ + 1) 35.2; 131 (C₃F₅⁺) 8.4; 125 (C₄F₄⁺ + 1) 32.6; 119 (C₂F₅⁺) 9.5; 113 (C₂F₄CH⁺) 6.3; 100 (C₂F₄⁺) 5.1; 77 (C₃H₂F₂⁺ + 1) 11; 64 (CF₂CH₂⁺) 5.3. Anal. Calcd for C₉H₄F₁₀O₄: C, 29.51; F, 51.91. Found: C, 28.9; F, 51.5.

Properties of $(-F_2CH_2CO)_2(3,6-dibromo-1,2,4,5-benzenetetra$ $yl)(OCH_2CF_2-)_2 (54). This compound melts at 152-154 °C. Spectral$ data are as follows. IR (KBr disk): 2968 m, 1469 vs, 1452 vs, 1397m, 1291 m, 1256 m, 1228 m, 1188 m, 1137 s, 1073 s, 978 s, 956 m,899 m, 826 m, 721 m, 651 w cm⁻¹; NMR: ¹⁹F, δ -121.3 (8F, m); ¹H,δ 4.8 (8H, m); CI MS [*m/e*(species) intensity]: 473/471 (M⁺ - Br)10.9/10.6; 435/433 (M⁺ - Br - 2F) 68/67.5; 415/413 (C₁₄H₇F₅O₄-Br⁺) 28.2/27.5; 353 (C₁₄H₇F₆O₄+) 12.3; 335 (C₁₄H₈F₅O₄+) 3.8; 319(C₁₄H₈F₅O₃+) 5.8; 306 (C₁₃H₇F₅O₃+) 15.1; 275 (C₁₂H₇F₄O₃+) 6.9; 255(C₁₂H₆F₃O₃+) 2.7; 226 (C₈H₆F₄O₃+) 11.7; 197 (C₇H₄F₄O₂+ + 1) 1.5;185 (C₆H₄F₄O₂+ + 1) 2.5; 161 (C₄H₄F₄O₂+ + 1) 6.2; 143 (C₄H₃F₄O+)34.6; 125 (C₄HF₄+) 18.7; 114 (C₂F₄CH₂+) 11.8; 95 (C₃H₂F₃+) 10.5; 81(C₂F₃+) 100; 64 (CF₂CH₂+) 20.4.

Properties of CF₂CF₂CH₂OCH₂OCH₂CF₂ (55). Spectral data are as follows. IR (neat): 2960 m, 1257 w, 1152 s, 1064 s, 1007 w, 974 m, 914 w, 849 w, 738 m, 707 w, 605 m cm⁻¹; NMR: ¹⁹F, δ –115.4 (terminal CF₂, 4F, m); –128.8 (center CF₂, 2F, s); ¹H, δ 4.65 (OCH₂O, 2H, s); 4.0 (4H, m); CI MS [*m/e* (species) intensity]: 225 (M⁺ + 1) 1.5; 210 (M⁺ - CH₂) 1.2; 205 (M⁺ - F) 11.6; 195 (M⁺ - OCH₂ + 1) 4.4; 194 (M⁺ - OCH₂) 1.9; 184 (M⁺ - 2HF) 3; 175 (M⁺ - CF₂ + 1) 26.4; 174 (M⁺ - CF₂) 10.4; 145 (M⁺ - OCH₂CF₂ + 1) 3.9; 131 (C₃F₅⁺) 1.2; 125 (M⁺ - C₂F₄ + 1) 3.5; 119 (C₂F₅⁺) 2.4; 113 (C₃F₄H⁺) 2.4; 105 (C₄F₃⁺) 3.5; 100 (C₂F₄⁺) 5.9; 86 (C₄F₂⁺) 100; 64 (CF₂CH₂⁺) 7.6. Anal. Calcd for C₆H₆F₆O₂: C, 32.14; F, 50.89. Found: C, 32.7; F, 51.1.

Properties of FC(O)OCH₂(CF₂)₃CH₂OC(O)F (56). Spectral data are as follows. IR (neat): 3004 m, 2945 m, 1848 s, 1633 m, 1446 s, 1377 s, 1272 m, 1168 m, 1040 s, 919 s, 751 s cm⁻¹; NMR: ¹⁹F, δ -120.6 (4F, m); -125.9 (2F, s); -19.3 (C(O)F, 2F, s); ¹H, δ 4.69 (4H, m); CI MS [*m/e* (species) intensity]: 285 (M⁺ - F) 3.5; 241 (M⁺ - OC(O)F) 100; 221 (M⁺ - OC(O)F - HF) 4.7; 175 (C₃H₄F₅O⁺) 17.7; 150 (C₃F₆⁺) 4.7; 127 (C₃H₂F₃O₂⁺) 18.2; 119 (C₂F₅⁺) 4.3; 100 (C₂F₄⁺) 6.4; 77 (C₃H₂F₂⁺ + 1) 29.

Properties of CF₂CF₂CH₂OS(O)OCH₂CF₂ (57). Spectral data are as follows. IR (neat): 2970 m, 2945 m, 1446 s, 1376 s, 1314 w, 1295 m, 1241 s, 1171 s, 1136 s, 1111 m, 1040 s, 996 s, 962 s, 752 s cm⁻¹; NMR: ¹⁹F, δ -115.6 (4F, m); -127.6 (2F, s); ¹H, δ 3.95 (4H, m); CI MS [*m/e* (species) intensity]: 273 (M⁺ + 15) 2.6; 259 (M⁺ + 1) 83.3; 239 (M⁺ - F) 17.1; 228 (M⁺ - OCH₂) 13.5; 219 (M⁺ - 2F - H) 1.2; 209 (M⁺ - CF₂ + 1) 1.1; 202 (M⁺ - 3F + 1) 4.4; 195 (M⁺ - SO₂ + 1) 30.6; 175 (M⁺ - SO₂ - F) 100; 161 (M⁺ - SO₂ - CH₂ - F) 73.4; 155 (M⁺ - SO₂ - HF - F) 11; 145 (C₄H₄F₄O⁺ + 1) 9.9; 131 (C₂F₄-CH₂O⁺ + 1) 7.1; 113 (C₂F₄CH⁺) 12.9; 100 (C₂F₄⁺) 33.9; 79 (CF₂-CHO⁺) 15.7; 64 (CF₂CH₂⁺) 50.6.

Properties of CF₂CF₂CH₂OSO₂OCH₂CF₂ (58). Spectral data are as follows. IR (KBr): 3004 m, 2945 m, 1633 m, 1444 s, 1404 s, 1376 s, 1261 w, 1040 s, 919 m, 831 w, 750 m cm⁻¹; NMR: ¹⁹F, δ –116.9 (4F, m); -124.6 (2F, s); ¹H, δ 3.97 (4H, m); CI MS [*m/e* (species) intensity]: 211 (M⁺ - SO₂ + 1) 7.4; 209 (M⁺ - SO₂ - H) 10.7; 195 (M⁺ - OCH₂CF₂ + 1) 3; 191 (M⁺ - SO₂ - F) 3.3; 181 (C₄H₂F₆O⁺ + 1) 3.6; 175 (M⁺ - C₂F₄ + 1) 11.1; 155 (C₅H₃F₄O⁺) 2.4; 130 (C₂F₄-CH₂O⁺) 4.3; 114 (C₂F₄CH₂⁺) 10.3; 107 (C₃F₃CH₂⁺) 44.7; 95 (C₂F₃-CH₂⁺) 4.8; 65 (CF₂CH₂⁺ + 1) 100. Anal. Calcd for C₅H₄F₆SO₄: C, 21.90; F, 41.6. Found: C, 22.2; F, 40.97.

Properties of CH₃CH(CF₃)OC₆F₄CN (59). A mixture of C₆F₅CN (5 g, 26 mmol), CH₃CH(CF₃)OH (2.6 g, 26 mmol) and sodium carbonate (3.5 g) is stirred and heated at 70–80 °C for 12 h. Distillation gives the product **59** which boils at 105–110 °C/2 mm (52.8% yield). Spectral data are as follows. IR: 2248 cm⁻¹; NMR: ¹⁹F, δ –79.4 (3F), –140.8 (2F), –154.5 (2F); ¹H, δ 1.62 (d), 4.72 (m). Hydrolysis product is more fully characterized. See compound **65**.

Properties of (C_6H_5O)₅ C_6CN (60). The reaction of C_6F_5CN (0.97 g, 5 mmol) with siloxane $C_6H_5OSiMe_3$ (5.5 g, 30 mmol) in the presence of cesium fluoride (250 mg) and 1,2-dimethoxyethane (10 mL) at 120 °C for 12 h gives the product **60** which melts at 162–166 °C (48% yield). IR (KBr): 2241 cm⁻¹ (CN). EI MS [*m/e* (species) intensity]: 563 (M⁺) 100; 470 (M⁺ - C_6H_5O) 10. NMR: ¹H, δ 6.9–7.3 (m). Anal. Calcd for $C_{37}H_{25}NO_5$: C, 78.84; H, 4.47; N, 2.49. Found: C, 79.08; H, 5.34; N, 2.34.

Preparation and Properties of 61–65. To **17** or **38–40** or **59** (1.0 g) in ethanol (20 mL) and 5% potassium hydroxide (10 mL) is added 30% hydrogen peroxide (5 mL). The mixture is stirred at room temperature for 8 h. Ethanol was evaporated under reduced pressure. The solid is filtered off, dried in air and recrystallized from petroleum ether/methylene chloride to yield 65–69%.

Properties of CF₃CH₂OC₆F₄CONH₂ (61). This compound melts at 156–158 °C (85% yield). Spectral data are as follows. NMR: ¹⁹F, δ -75.1 (3F); -140.4 (2F); -155.1 (2F); ¹H, δ 4.8 (m); 7.0 (d); EI MS [*m/e* (species) intensity]: 272 (M⁺ - F) 100. Anal. Calcd for C₉H₄F₇NO₂: C, 37.11; H, 1.37; N, 4.81; F, 45.70. Found: C, 37.28; H, 1.00; N, 4.78; F, 45.70.

Properties of FCH₂CH₂OC₆F₄CONH₂ (62). This compound melts at 173–174 °C (74% yield). Spectral data are as follows. NMR: ¹⁹F, δ –141.4 (2F); –155.7 (2F); –190.4 (1F); ¹H, δ 4.6 (m), 4.8 (m), 6.0 (m); E IMS [*m/e* (species) intensity]: 255 (M⁺) 34.3; 209 (M⁺ – FCH₂-CH₂ + 1) 23.5; 193 (C₆F₄CONH₂⁺ + 1) 100. Anal. Calcd for C₉H₆F₅-NO₂: C, 42.36; H, 2.35. Found: C, 41.18; H, 2.24.

Properties of HCF₂CF₂CH₂OC₆F₄CONH₂ (63). This compound melts at 140–142 °C (78% yield). Spectral data are as follows. NMR: ¹⁹F, δ –122.3 (2F); –135.1 (2F); –139.3 (2F); –152.5 (2F); ¹H, δ 4.85 (t,2H); 6.49 (tt,1H); 7.5 (d, 2H); EI MS [*m/e* (species) intensity]: 323 (M⁺) 53; 307 (M⁺ – NH₂) 100; 193 (C₆F₄CONH₂⁺ + 1) 100. Anal. Calcd for C₁₀H₅F₈NO₂: C, 37.17; H, 1.55; N, 4.34. Found: C, 37.33; H, 1.78; N, 4.46.

Properties of n**-**C₇**F**₁₅**CH**₂**OC**₆**F**₄**CONH**₂ (64). The compound melts at 144–149 °C (69% yield). Spectral data are as follows. NMR: ¹⁹**F**, δ –76.7 (3**F**); –116.5 (2**F**); –117.6 to –118.6 (8**F**); –121.8 (2**F**); –139.3 (2**F**); –152.3 (2**F**); ¹**H**, δ 5.1 (t); 7.5 (d); EI MS [*m/e* (species) intensity]: 591 (M⁺) 33; 575 (M⁺ – NH₂) 100. Anal. Calcd for C₁₅H₄F₁₉NO₂: C, 30.47; H, 0.68; N, 2.37. Found: C, 30.45; H, 0.77; N, 2.53.

Properties of CH₃CH(CF₃)OC₆F₄CONH₂ (65). This compound melts at 173–174 °C (85% yield). Spectral data are as follows. NMR: ¹⁹F, δ –74.7 (d); –145.3 (2F); –153.2 (2F); ¹H, δ 1.59 (d); 4.63 (m); 7.3 (d). Anal. Calcd for C₁₀H₆F₇NO₂: C, 39.34; H, 1.97; N, 4.59; F, 43.61. Found: C, 39.40; H, 2.04; N, 4.58; F, 43.8.

Acknowledgment. We are grateful to the National Science Foundation (Grants CHE-9310389 and OSR-9350539 (R.L.K. and J.C.)) and Air Force Office of Scientific Research (Grant 91-0189) for support of this research. We also thank Dr. Gary Knerr for obtaining the mass spectral data.